请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”

笔趣阁 www.biqugecom.cc,最快更新学霸的黑科技模拟器最新章节!

详细证明过程,不过既然老师都不画图,他也懒得写过程,只花了几秒钟时间,就在纸上写到。

    证明:

    ak=8.64!

    其实要是写证明,整张纸都会写满,实际答案是25分之216,也就是8.64.

    “额!”刘勇本想说几句宽慰的话。

    然后画个图,要是陆晓还做不出,就让顾柔来试试。

    这题有点难。

    即便顾柔可能都做不出。

    那他就能让其他人也做做看,都做不出,就详细讲解一番。

    到时候陆晓就知道以他的实力,根本没资格参加比赛。

    现在,他的话却堵在嗓子眼了。

    片刻后他反应过来,“你做过!”

    “不对不对,这是我刚刚才编的题,你不可能做过....,你,你....。”刘勇张口结舌,很快情绪变得亢奋起来。

    顾柔颓丧的补刀道:“陆晓花了十几分钟看完大一数学,下午就会做很高难度的奥数题了。”

    经过多番验证,顾柔已经肯定,陆晓就是隐藏高手,上周他在课堂上飞快翻书,就是在背书。

    这让自认为是天才的顾柔都甘拜下风。

    “简直让人难以置信!这才几秒钟,你怎么就得到答案了呢?要知道,证明过程很复杂啊!”刘勇还在喃喃自语。

    随后又飞快写了一道题,道:“再试试!”

    这次他写的题可不简单,这可是传说中的传奇第六题,1988年数学比赛时难倒了陶哲轩。

    参赛的268名选手在这道题目上的平均得分只有0.6分。

    在比赛场内的四位数论专家短时间内都做不出来。

    他觉得陆晓也应该不会做,要是会做的话,肯定以前接触过。

    他写完后询问道:“做过吗?”

    陆晓老实的摇摇头。

    随后开始阅题,【正整数a与b使得ab+1整除a2+b2,求证:(a2+b2)/(ab+1)是某个正整数的平方。】

    【模拟中,模拟成功,耗时3s,解题过程:....根据(1),a2必为整数;

    根据(2),a2不可能为0;

    由于a1≥b1,因此a2必定小于a1

    但由于a1已经是方程的最小解了,a2不应该小于a1,因为这和我们说a1+b1是方程解的和的最小值,因此两者相矛盾……

    因而最终我们可以证明,(a2+b2)/(ab+1)是某个正整数的平方。】

    在模拟器结果里,这道题给出了好几种解法。

    陆晓为了直接通关,继续写起来。

    其实运用的知识点依旧是高中知识,只不过非常巧妙。

    结合了“韦达跳跃”的概念。

    除了“韦达跳跃”,还涉及了“无穷递降法”,同样也是高中知识。

    这个方法最先由大数学家费马使用。

    他据此证明了x的四次方+y的四次方=z的四次方没有正整数解,也就是费马大定理中n=4的情况。

    欧拉也用无穷递降法证明过,每个除4后余数为1的质数都可以表达为两个平方之和。

    值得一提的是,这定理也是由费马最先提出的,虽然他没有提出证明。

    既然是高中知识点的知识,那就在模拟器能够完美模拟的范围内。

    陆晓干脆间接证明了一下。

    他发现稿子都完全不够用了。

    数学老师连忙拿出一大叠稿子给陆晓写证明过程。

    他能看出,陆晓以前真没有接触过这道题,证明过程里,还推导出了其他证明,这简直就是数学家才干的事!

    现在,陆晓已经是这个级别了吗?

    联想到陆晓之前证明他拿出的那道题,只是几秒钟就得出答案。

    这种表现,和历史上的拉马努金有点像。

    拉马努金就是大脑直接给出答案,根本不用计算过程,这是一种特殊天赋。

    刘勇有个大胆的想法!

    要是把千禧年七大问题之一的题目,放到陆晓面前。

    他不会把这种难度的题也给证明了吧!

请安装我们的客户端

更新超快的免费小说APP

下载APP
终身免费阅读

添加到主屏幕

请点击,然后点击“添加到主屏幕”